The inactivation of tumor suppressor genes located within 9p21 locus (CDKN2A, CDKN2B) occurs in up to 30% of children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL), but its independent prognostic significance remains controversial. In order to investigate the prognostic impact of deletions and promoter methylation within 9p21, 641 children with newly diagnosed BCP-ALL using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) were investigated. A total of 169 (26.4%) microdeletions in 9p21 were detected, of which 71 were homozygous. Patients with CDKN2A homozygous deletions were older at diagnosis (p < .001), more frequently steroid resistant (p = .049), had higher WBC count (p < .001), higher MRD at Day 15 (p = .013) and lower relapse-free survival [p = .028, hazard ratio: 2.28 (95% confidence interval: 1.09-4.76)] than patients without these alterations. CDKN2A homozygous deletions coexisted with IKZF1 and PAX5 deletions (p < .001). In conclusion, CDKN2A homozygous deletions, but not promoter methylation, are associated with poor response to treatment and increased relapse risk of pediatric BCP-ALL.
Keywords: 9p21 chromosomal region; Childhood BCP-ALL; MLPA; MRD; microdeletions; prognostic factors.