Loss-of-function mutation V290M in the ligand-binding domain of the peroxisome proliferator activated receptor γ (PPARγ) is associated with a ligand resistance syndrome (PLRS), characterized by partial lipodystrophy and severe insulin resistance. In this data article we discuss an X-ray diffraction dataset that yielded the structure of PPARγ LBD V290M mutant refined at 2.3 Å resolution, that allowed building of 3D model of the receptor mutant with high confidence and revealed continuous well-defined electron density for the partial agonist diclofenac bound to hydrophobic pocket of the PPARγ. These structural data provide significant insights into molecular basis of PLRS caused by V290M mutation and are correlated with the receptor disability of rosiglitazone binding and increased affinity for corepressors. Furthermore, our structural evidence helps to explain clinical observations which point out to a failure to restore receptor function by the treatment with a full agonist of PPARγ, rosiglitazone.
Keywords: Nuclear receptors; Peroxisome proliferator activated receptor γ; X-ray structureç ligand resistance syndrome.