Many human tumors require extracellular arginine (Arg) for growth because the key enzyme for de novo biosynthesis of Arg, argininosuccinate synthetase 1 (ASS1), is silenced. These tumors are sensitive to Arg-starvation therapy using pegylated arginine deiminase (ADI-PEG20) which digests extracellular Arg. Many previous studies reported that ASS1 silencing is due to epigenetic inactivation of ASS1 expression by DNA methylation, and that the demethylation agent 5-aza-deoxycytidine (Aza-dC) can induce ASS1 expression. Moreover, it was reported that cisplatin suppresses ASS1 expression through ASS1 promoter methylation, leading to synthetic lethality to ADI-PEG20 treatment. We report here that cisplatin supppresses ASS1 expression is due to upregulation of HIF-1α and downregulation of c-Myc, which function as negative and positive regulators of ASS1 expression, respectively, by reciprocal bindings to the ASS1 promoter. In contrast, we found that Aza-dC induces ASS1 expression by downregulation of HIF-1α but upregulation of c-Myc. We further demonstrated that the clock protein DEC1 is the master regulator of HIF-1α and c-Myc that regulate ASS1. cDDP upregulates DEC1, whereas Aza-dC suppresses its expression. Using two proteasomal inhibitors bortezomib and carfilzomib which induce HIF-1α accumulation, we further demonstrated that HIF-1α is involved in ASS1 silencing for the maintenance of Arg auxotrophy for targeted Arg-starvation therapy.
Keywords: ASS1; DEC1-HIF-1α-c-Myc axis; DNA methylation; arginine-starvation; cisplatin.