Break-apart ALK FISH probe is the FDA approved approach for detection of ALK rearrangements in lung carcinoma patients who may benefit from ALK kinase inhibitors. The FISH assay can be technically challenging and difficult to interpret. ALK immunohistochemistry and next generation sequencing have been proposed as alternative approaches. In this study, we compared various ALK -FISH patterns to next -generation sequencing (NGS) for gene fusion detection, ALK immunohistochemistry (IHC) and tumor responses to crizotinib. 72 (4%) of 2116 lung adenocarcinoma were positive by ALK- FISH. Of 28 ALK-FISH positive cases selected for the study, FISH patterns included 15 (54%) cases with split signal, 10 (36%) with single orange signal and 3 (10%) with "mixed pattern". 12 (80%) cases with split signal and 4 (40%) cases with single orange signal were positive by NGS and IHC, while mixed cases were all negative. Mutation analysis of discordant cases revealed multiple mutations including oncogenic mutations in EGFR, KRAS, BRAF and ATM genes. All discordant cases in groups with split and mixed signal showed a lower number of cells with rearrangement (mean 28.5%; range 20.5-36.9%). No statistically significant association between response to crizotinib and FISH patterns was observed (p=0.73). In contrast, NGS fusion positive cases were associated with more responses to crizotinib than NGS negative cases (p= 0.016). Our study suggests that ALK FISH alone may not be the most reliable assay for detection of ALK gene rearrangements, and probably should be used in parallel with ALK IHC and NGS for detection of gene fusions and mutations.
Keywords: ALK; FISH; NGS; immunohistochemistry; lung.