The microbial resistance to antibiotics is a genuine global threat. Consequently, a search of new inhibitors remains of acute importance due to the increasing spread of multidrug resistance. Here we present a new type of non-β-lactam β-lactamase inhibitor PA-34 based on natural phenoxyaniline, identified using computer-assisted screening of scaffolds related to those of known low-affinity inhibitors. The compound displays reversible competitive inhibition of bacterial β-lactamase TEM-171, with a Ki of 88 μM. Using enzyme kinetics, infra-red spectroscopy, fluorescence quenching and computer docking, we propose that the inhibitor binds at the entrance to the enzyme active site. This is a novel inhibition mechanism compared to binding covalently to the catalytic serine in the active site or non-covalently to the allosteric site. The residues involved in binding the inhibitor are conserved among molecular class A β-lactamases. The identified compound and its proposed binding mode may have a potential for a regulation of the catalytic activity of a wide range of class A β-lactamases. We also hypothesise that the presented route for finding non-β-lactam compounds may be an effective and durable approach for combating bacterial antibiotic resistance.
Keywords: Antibiotic resistance; Lead discovery; Non-β-lactam inhibitor; Recombinant β-lactamase TEM.
Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.