In typical kinase inhibitor programs, a hinge binder showing best potency with preferential specificity is initially selected, followed by fine-tuning of the accompanying substituents on its core module. A shortcoming of this approach is that the exclusive focus on a single chemotype can endanger all the analogues in the series if a critical shortcoming is revealed. Thus, an early evaluation of structure-activity relationships (SARs) can mitigate unforeseen outcomes within a series of multiple compounds, although there have been very few examples to follow such a policy. PI4KIIIα is one of four mammalian phosphatidylinositol-4 kinases and has recently drawn significant attention as an emerging target for hepatitis C virus (HCV) treatment. In this letter, a novel "head-to-tail" approach to discover a diverse set of PI4KIIIα inhibitors is reported. We believe this method will generate distinct core scaffolds, a rational strategy to circumvent potential risks in general kinase programs.
Keywords: HCV; PI4KIIIα; diverse scaffolds; head-to-tail approach.