We present a room temperature STM study of perylene adsorption on Ag(110) at the monolayer coverage regime. We found that structure and symmetry of the perylene monolayer are settled by thermodynamic balance of the three factors: (i) the ability of perylene molecules to recognize specific adsorption sites on the (110) lattice, (ii) the intermolecular interaction, and (iii) the accommodation of thermal motion of the molecules. The moderate strength of the site recognition and the intermolecular interaction, of the same order of magnitude as kT ∼ 25 meV, represents a key feature of the thermodynamic balance. It bestows to this system the unique quality to form the quasi-liquid monolayer of epitaxial as well as self-assembling character. The perylene monolayer accommodates the short-range motion of the molecules instead of quenching it. It precludes the formation of possible solid nuclei and maintains common registry of the included molecules. The surface registry of the quasi-liquid phase is provided by locking of a structure-related fraction of the perylene molecules into specific adsorption sites of the (110) lattice favorable in terms of intermolecular interaction.