Background: Scar homogenization improves long-term ventricular arrhythmia-free survival compared with standard limited-substrate ablation in patients with post-infarction ventricular tachycardia (VT). Whether such benefit extends to patients with nonischemic cardiomyopathy and scar-related VT is unclear.
Objectives: The aim of this study was to assess the long-term efficacy of an endoepicardial scar homogenization approach compared with standard ablation in this population.
Methods: Consecutive patients with dilated nonischemic cardiomyopathy (n = 93), scar-related VTs, and evidence of low-voltage regions on the basis of pre-defined criteria on electroanatomic mapping (i.e., bipolar voltage <1.5 mV) underwent either standard VT ablation (group 1 [n = 57]) or endoepicardial ablation of all abnormal potentials within the electroanatomic scar (group 2 [n = 36]). Acute procedural success was defined as noninducibility of any VT at the end of the procedure; long-term success was defined as freedom from any ventricular arrhythmia at follow-up.
Results: Acute procedural success rates were 69.4% and 42.1% after scar homogenization and standard ablation, respectively (p = 0.01). During a mean follow-up period of 14 ± 2 months, single-procedure success rates were 63.9% after scar homogenization and 38.6% after standard ablation (p = 0.031). After multivariate analysis, scar homogenization and left ventricular ejection fraction were predictors of long-term success. During follow-up, the rehospitalization rate was significantly lower in the scar homogenization group (p = 0.035).
Conclusions: In patients with dilated nonischemic cardiomyopathy, scar-related VT, and evidence of low-voltage regions on electroanatomic mapping, endoepicardial homogenization of the scar significantly increased freedom from any recurrent ventricular arrhythmia compared with a standard limited-substrate ablation. However, the success rate with this approach appeared to be lower than previously reported with ischemic cardiomyopathy, presumably because of the septal and midmyocardial distribution of the scar in some patients.
Keywords: electroanatomic mapping; inducibility; low-voltage areas; ventricular arrhythmia.
Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.