Several clinical trials have recently proven the efficacy of mechanical thrombectomy for treating ischemic stroke, within a six-hour window for therapy. To move beyond treatment windows and toward personalized risk assessment, it is essential to accurately identify the extent of tissue-at-risk ("penumbra"). We introduce a fully automated method to estimate the penumbra volume using multimodal MRI (diffusion-weighted imaging, a T2w- and T1w contrast-enhanced sequence, and dynamic susceptibility contrast perfusion MRI). The method estimates tissue-at-risk by predicting tissue damage in the case of both persistent occlusion and of complete recanalization. When applied to 19 test cases with a thrombolysis in cerebral infarction grading of 1-2a, mean overestimation of final lesion volume was 30 ml, compared with 121 ml for manually corrected thresholding. Predicted tissue-at-risk volume was positively correlated with final lesion volume ( p < 0.05). We conclude that prediction of tissue damage in the event of either persistent occlusion or immediate and complete recanalization, from spatial features derived from MRI, provides a substantial improvement beyond predefined thresholds. It may serve as an alternative method for identifying tissue-at-risk that may aid in treatment selection in ischemic stroke.
Keywords: Acute stroke; endovascular therapy; magnetic resonance diffusion imaging; magnetic resonance perfusion; mathematical modeling.