Structure-Based Design of a Covalent Inhibitor of the SET Domain-Containing Protein 8 (SETD8) Lysine Methyltransferase

J Med Chem. 2016 Nov 10;59(21):9881-9889. doi: 10.1021/acs.jmedchem.6b01244. Epub 2016 Nov 2.

Abstract

Selective inhibitors of protein lysine methyltransferases, including SET domain-containing protein 8 (SETD8), are highly desired, as only a fraction of these enzymes are associated with high-quality inhibitors. From our previously discovered SETD8 inhibitor, we developed a more potent analog and solved a cocrystal structure, which is the first crystal structure of SETD8 in complex with a small-molecule inhibitor. This cocrystal structure allowed the design of a covalent inhibitor of SETD8 (MS453), which specifically modifies a cysteine residue near the inhibitor binding site, has an IC50 value of 804 nM, reacts with SETD8 with near-quantitative yield, and is selective for SETD8 against 28 other methyltransferases. We also solved the crystal structure of the covalent inhibitor in complex with SETD8. This work provides atomic-level perspective on the inhibition of SETD8 by small molecules and will help identify high-quality chemical probes of SETD8.

MeSH terms

  • Dose-Response Relationship, Drug
  • Drug Design*
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology*
  • Histone-Lysine N-Methyltransferase / antagonists & inhibitors*
  • Histone-Lysine N-Methyltransferase / metabolism
  • Humans
  • Models, Molecular
  • Molecular Structure
  • Structure-Activity Relationship

Substances

  • Enzyme Inhibitors
  • Histone-Lysine N-Methyltransferase
  • KMT5A protein, human