Fully Automated Enhanced Tumor Compartmentalization: Man vs. Machine Reloaded

PLoS One. 2016 Nov 2;11(11):e0165302. doi: 10.1371/journal.pone.0165302. eCollection 2016.

Abstract

Objective: Comparison of a fully-automated segmentation method that uses compartmental volume information to a semi-automatic user-guided and FDA-approved segmentation technique.

Methods: Nineteen patients with a recently diagnosed and histologically confirmed glioblastoma (GBM) were included and MR images were acquired with a 1.5 T MR scanner. Manual segmentation for volumetric analyses was performed using the open source software 3D Slicer version 4.2.2.3 (www.slicer.org). Semi-automatic segmentation was done by four independent neurosurgeons and neuroradiologists using the computer-assisted segmentation tool SmartBrush® (referred to as SB), a semi-automatic user-guided and FDA-approved tumor-outlining program that uses contour expansion. Fully automatic segmentations were performed with the Brain Tumor Image Analysis (BraTumIA, referred to as BT) software. We compared manual (ground truth, referred to as GT), computer-assisted (SB) and fully-automated (BT) segmentations with regard to: (1) products of two maximum diameters for 2D measurements, (2) the Dice coefficient, (3) the positive predictive value, (4) the sensitivity and (5) the volume error.

Results: Segmentations by the four expert raters resulted in a mean Dice coefficient between 0.72 and 0.77 using SB. BT achieved a mean Dice coefficient of 0.68. Significant differences were found for intermodal (BT vs. SB) and for intramodal (four SB expert raters) performances. The BT and SB segmentations of the contrast-enhancing volumes achieved a high correlation with the GT. Pearson correlation was 0.8 for BT; however, there were a few discrepancies between raters (BT and SB 1 only). Additional non-enhancing tumor tissue extending the SB volumes was found with BT in 16/19 cases. The clinically motivated sum of products of diameters measure (SPD) revealed neither significant intermodal nor intramodal variations. The analysis time for the four expert raters was faster (1 minute and 47 seconds to 3 minutes and 39 seconds) than with BT (5 minutes).

Conclusion: BT and SB provide comparable segmentation results in a clinical setting. SB provided similar SPD measures to BT and GT, but differed in the volume analysis in one of the four clinical raters. A major strength of BT may its independence from human interactions, it can thus be employed to handle large datasets and to associate tumor volumes with clinical and/or molecular datasets ("-omics") as well as for clinical analyses of brain tumor compartment volumes as baseline outcome parameters. Due to its multi-compartment segmentation it may provide information about GBM subcompartment compositions that may be subjected to clinical studies to investigate the delineation of the target volumes for adjuvant therapies in the future.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Aged
  • Artificial Intelligence
  • Brain Neoplasms / diagnostic imaging
  • Brain Neoplasms / pathology*
  • Female
  • Glioblastoma / diagnostic imaging
  • Glioblastoma / pathology*
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / instrumentation
  • Male
  • Middle Aged
  • Pattern Recognition, Automated / methods*
  • Tumor Burden

Grants and funding

This study was supported by the Swiss National Science Foundation (SNF Grant No. 320030_140958), the Bernese Cancer League, the Swiss Cancer League and the European Unions Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 600841. Brainlab AG provided support in the form of salary for author CR, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section.