Continuous analysis of single cells, over several cell divisions and for up to weeks at a time, is crucial to deciphering rare, dynamic and heterogeneous cell responses, which would otherwise be missed by population or single-cell snapshot analysis. Although the field of long-term single-cell imaging, tracking and analysis is constantly advancing, several technical challenges continue to hinder wider implementation of this important approach. This is a particular problem for mammalian cells, where in vitro observation usually remains the only possible option for uninterrupted long-term, single-cell observation. Efforts must focus not only on identifying and maintaining culture conditions that support normal cellular behavior while allowing high-resolution imaging over time, but also on developing computational methods that enable semiautomatic analysis of the data. Solutions in microscopy hard- and software, computer vision and specialized theoretical methods for analysis of dynamic single-cell data will enable important discoveries in biology and beyond.