Receptor Species-dependent Desensitization Controls KCNQ1/KCNE1 K+ Channels as Downstream Effectors of Gq Protein-coupled Receptors

J Biol Chem. 2016 Dec 16;291(51):26410-26426. doi: 10.1074/jbc.M116.746974. Epub 2016 Nov 10.

Abstract

Activation of Gq protein-coupled receptors (GqPCRs) might induce divergent cellular responses, related to receptor-specific activation of different branches of the Gq signaling pathway. Receptor-specific desensitization provides a mechanism of effector modulation by restricting the spatiotemporal activation of signaling components downstream of Gq We quantified signaling events downstream of GqPCR activation with FRET-based biosensors in CHO and HEK 293 cells. KCNQ1/KCNE1 channels (IKs) were measured as a functional readout of receptor-specific activation. Activation of muscarinic M1 receptors (M1-Rs) caused robust and reversible inhibition of IKs. In contrast, activation of α1B-adrenergic receptors (α1B-ARs) induced transient inhibition of IKs, which turned into delayed facilitation after agonist withdrawal. As a novel finding, we demonstrate that GqPCR-specific kinetics of IKs modulation are determined by receptor-specific desensitization, evident at the level of Gαq activation, phosphatidylinositol 4,5-bisphosphate (PIP2) depletion, and diacylglycerol production. Sustained IKs inhibition during M1-R stimulation is attributed to robust membrane PIP2 depletion, whereas the rapid desensitization of α1B-AR delimits PIP2 reduction and augments current activation by protein kinase C (PKC). Overexpression of Ca2+-independent PKCδ did not affect the time course of α1B-AR-induced diacylglycerol formation, excluding a contribution of PKCδ to α1B-AR desensitization. Pharmacological inhibition of Ca2+-dependent PKC isoforms abolished fast α1B receptor desensitization and augmented IKs reduction, but did not affect IKs facilitation. These data indicate a contribution of Ca2+-dependent PKCs to α1B-AR desensitization, whereas IKs facilitation is induced by Ca2+-independent PKC isoforms. In contrast, neither inhibition of Ca2+-dependent/Ca2+-independent isoforms nor overexpression of PKCδ induced M1 receptor desensitization, excluding a contribution of PKC to M1-R-induced IKs modulation.

Keywords: IKs; K channel; KCNQ1; PKC; adrenergic receptor; alpha-adrenergic α1B receptor; desensitization; diacylglycerol; fluorescence resonance energy transfer (FRET); ion channel; muscarinic M1 receptor; phosphoinositide; receptor desensitization; signal transduction.

MeSH terms

  • Animals
  • CHO Cells
  • Calcium / metabolism
  • Calcium Signaling / physiology*
  • Cricetinae
  • Cricetulus
  • GTP-Binding Protein alpha Subunits, Gq-G11 / genetics
  • GTP-Binding Protein alpha Subunits, Gq-G11 / metabolism
  • HEK293 Cells
  • Humans
  • KCNQ1 Potassium Channel / genetics
  • KCNQ1 Potassium Channel / metabolism*
  • Phosphatidylinositol 4,5-Diphosphate / genetics
  • Phosphatidylinositol 4,5-Diphosphate / metabolism
  • Potassium Channels, Voltage-Gated / genetics
  • Potassium Channels, Voltage-Gated / metabolism*
  • Protein Kinase C-delta / metabolism
  • Receptor, Muscarinic M1 / genetics
  • Receptor, Muscarinic M1 / metabolism*
  • Receptors, Adrenergic, alpha-1 / genetics
  • Receptors, Adrenergic, alpha-1 / metabolism*

Substances

  • GNAQ protein, human
  • KCNE1 protein, human
  • KCNQ1 Potassium Channel
  • KCNQ1 protein, human
  • Phosphatidylinositol 4,5-Diphosphate
  • Potassium Channels, Voltage-Gated
  • Receptor, Muscarinic M1
  • Receptors, Adrenergic, alpha-1
  • PRKCD protein, human
  • Protein Kinase C-delta
  • GTP-Binding Protein alpha Subunits, Gq-G11
  • Calcium