RNA sequencing studies have identified hundreds of non-coding RNAs in bacteria, including regulatory small RNA (sRNA). However, our understanding of sRNA function has lagged behind their identification due to a lack of tools for the high-throughput analysis of RNA-RNA interactions in bacteria. Here we demonstrate that in vivo sRNA-mRNA duplexes can be recovered using UV-crosslinking, ligation and sequencing of hybrids (CLASH). Many sRNAs recruit the endoribonuclease, RNase E, to facilitate processing of mRNAs. We were able to recover base-paired sRNA-mRNA duplexes in association with RNase E, allowing proximity-dependent ligation and sequencing of cognate sRNA-mRNA pairs as chimeric reads. We verified that this approach captures bona fide sRNA-mRNA interactions. Clustering analyses identified novel sRNA seed regions and sets of potentially co-regulated target mRNAs. We identified multiple mRNA targets for the pathotype-specific sRNA Esr41, which was shown to regulate colicin sensitivity and iron transport in E. coli Numerous sRNA interactions were also identified with non-coding RNAs, including sRNAs and tRNAs, demonstrating the high complexity of the sRNA interactome.
Keywords: CRAC; EHEC; CLIP‐Seq; enterohaemorrhagic E. coli; non‐coding RNA.
© 2016 The Authors. Published under the terms of the CC BY 4.0 license.