Aim: To investigate the accuracy of a rotational C-arm CT-based 3D heart model to predict an optimal C-arm configuration during transcatheter aortic valve replacement (TAVR).
Methods: Rotational C-arm CT (RCT) under rapid ventricular pacing was performed in 57 consecutive patients with severe aortic stenosis as part of the pre-procedural cardiac catheterization. With prototype software each RCT data set was segmented using a 3D heart model. From that the line of perpendicularity curve was obtained that generates a perpendicular view of the aortic annulus according to the right-cusp rule. To evaluate the accuracy of a model-based overlay we compared model- and expert-derived aortic root diameters.
Results: For all 57 patients in the RCT cohort diameter measurements were obtained from two independent operators and were compared to the model-based measurements. The inter-observer variability was measured to be in the range of 0°-12.96° of angular C-arm displacement for two independent operators. The model-to-operator agreement was 0°-13.82°. The model-based and expert measurements of aortic root diameters evaluated at the aortic annulus (r = 0.79, P < 0.01), the aortic sinus (r = 0.93, P < 0.01) and the sino-tubular junction (r = 0.92, P < 0.01) correlated on a high level and the Bland-Altman analysis showed good agreement. The interobserver measurements did not show a significant bias.
Conclusion: Automatic segmentation of the aortic root using an anatomical model can accurately predict an optimal C-arm configuration, potentially simplifying current clinical workflows before and during TAVR.
Keywords: Aortic stenosis; Degenerative valve disease; Imaging modalities; Transcatheter aortic valve replacement.