Objective: To investigate ocular changes in the monocularly deprivation myopic model of mutant Lumican transgenic mice. Comparing influences on biological parameters and sclera development between Lumican transgenic and form deprivation mice, and to prepare for further study of pathogenesis of pathological myopia (PM). Methods: Experimental research. Lumican transgenic mice and wild mice were monocularly lid-sutured at ten days after birth. All eyes were divided into 6 groups, group A(32 eyes): control eyes in transgenic mice; group B(34 eyes): sutured eyes in transgenic mice; group C(34 eyes): fellow eyes in transgenic mice; group D(28 eyes): control eyes in wild mice; group E(32 eyes): sutured eyes in wild mice; group F(32 eyes): fellow eyes in wild mice. Refraction was measured by streak retinoscopye and axial length was measured by vernier caliper at 8 weeks (56 days) after birth. Lumican expression was detected by quantitative real-time PCR in all groups. Results: The refraction in group B and group E were (-0.38±1.10) D and (0.14±1.26)D respectively, which were significantly different compared with contralateral groups and normal control groups (F=9.525, 10.067; P<0.01). The mean axial length were also increased in group B ((3.28 ± 0.07)mm and group E (3.24 ± 0.09)mm, (F=7.183, 6.671; P<0.05). Expression level of Lumican mRNA in sclera was increased in group B, which was significantly different from group A and group C (F= 6.262; P<0.05). The expression of Lumican mRNA was increased in group B and C when compared with group E and F (t=4.772, 2.218, P<0.05). Conclusions: Form-deprivation in mutant Lumican transgenic mice causes myopic changes in deprived eyes. The gene expression level of Lumican in sclera of transgenic mice is significantly increased compared with contralateral eyes or that of wild group. Lumican mutation may effect the development of PM, and the interaction of genetic and environmental factors may lead to development of PM. (Chin J Ophthalmol, 2016, 52: 850-855).