Niemann-Pick disease (NPD) type B is a rare autosomal recessive disease characterized by variable levels of impairment in sphingomyelin phosphodiesterase 1 (SMPD1) activity. Lung involvement is the most important prognostic factor in NPD-B, with recurrent respiratory infections starting in infancy being the major cause of morbidity and mortality. We hypothesized that decreased SMPD1 activity impaired airway epithelium host defense response. SMPD1 activity was reduced using inducible shRNA. Surprisingly, decreasing SMPD1 activity by 50%, resulted in increased neutrophil recruitment, both at baseline and in response to bacterial stimulation. This correlated with elevated levels of cytokine mRNA shown to contribute to neutrophil recruitment in unstimulated (e.g. IL-8 and GRO-α) and infected cells (e.g. IL-8, GRO-α, GM-CSF and CCL20). Instead of preventing the host defence responses, decreased SMPD1 activity results in an inflammatory response even in the absence of infection. Moreover, decreasing SMPD1 activity resulted in a pro-oxidative shift. Accordingly, expression of an inactive mutant, SMPD1[L225P] but not the WT enzyme increased activation of the antioxidant transcription factor NRF2. Therefore, decreasing SMPD1 activity by 50% in airway epithelial cells, the equivalent of the loss of one allele, results in the accumulation of oxidants that activates NRF2 and a concomitant increased cytokine production as well as neutrophil recruitment. This can result in a chronic inflammatory state that impairs host defence similar to scenarios observe in other chronic inflammatory lung disease such as Chronic Obstructive Pulmonary Disease or Cystic Fibrosis.
Keywords: Acidic sphingomyelinase; Airway epithelium; Interleukins; Niemann-Pick disease; Pseudomonas aeruginosa; Reactive oxygen species.
Copyright © 2016 Elsevier Inc. All rights reserved.