In Sub-Saharan Africa rapid urban growth combined with rising poverty is creating diverse urban environments, the nature of which are not adequately captured by a simple urban-rural dichotomy. This paper proposes an alternative classification scheme for urban mapping based on a gradient approach for the southern portion of the West African country of Ghana. Landsat Enhanced Thematic Mapper Plus (ETM+) and European Remote Sensing Satellite-2 (ERS-2) synthetic aperture radar (SAR) imagery are used to generate a pattern based definition of the urban context. Spectral mixture analysis (SMA) is used to classify a Landsat scene into Built, Vegetation and Other land covers. Landscape metrics are estimated for Built and Vegetation land covers for a 450 meter uniform grid covering the study area. A measure of texture is extracted from the SAR imagery and classified as Built/Non-built. SMA based measures of Built and Vegetation fragmentation are combined with SAR texture based Built/Non-built maps through a decision tree classifier to generate a nine class urban context map capturing the transition from unsettled land at one end of the gradient to the compact urban core at the other end. Training and testing of the decision tree classifier was done using very high spatial resolution reference imagery from Google Earth. An overall classification agreement of 77% was determined for the nine-class urban context map, with user's accuracy (commission errors) being lower than producer's accuracy (omission errors). Nine urban contexts were classified and then compared with data from the 2000 Census of Ghana. Results suggest that the urban classes appropriately differentiate areas along the urban gradient.