The sterile worker castes found in the colonies of social insects are often cited as archetypal examples of altruism in nature. The challenge is to explain why losing the ability to mate has evolved as a superior strategy for transmitting genes into future generations. We propose that two conditions are necessary for the evolution of sterility: completely overlapping generations and monogamy. A review of the literature indicates that when these two conditions are met we consistently observe the evolution of sterile helpers. We explain the theory and evidence behind these ideas, and discuss the importance of ecology in predicting whether sterility will evolve using examples from social birds, mammals, and insects. In doing so, we offer an explanation for the extraordinary lifespans of some cooperative species which hint at ways in which we can unlock the secrets of long life.
Keywords: Hamilton's rule; cooperation; evolution; longevity; monogamy; sterility.
© 2016 WILEY Periodicals, Inc.