Hematopoietic stem and progenitor cells are necessary to maintain, repair, and reconstitute the hematopoietic blood cell system. Mobilization of these cells from bone marrow to blood can be greatly increased under certain conditions, one such being exercise. The purpose of this study was to identify the importance of exercise intensity in hematopoietic mobilization, to better understand the mobilization kinetics postexercise, and to determine if exercise is capable of mobilizing several specific populations of hematopoietic cells that have clinical relevance in a transplant setting. Healthy individuals were exercised on a cycle ergometer at 70% of their peak work rate (WRpeak) until volitional fatigue and at 30% of their WRpeak work matched to the 70% WRpeak bout. Blood was collected before, immediately post, and 10, 30, and 60 min postexercise. Total blood cells, hematocrit, and mononuclear cells isolated by density gradient centrifugation were counted. Specific populations of hematopoietic stem cells were analyzed by flow cytometry. Mononuclear cells, CD34+, CD34+/CD38-, CD34+/CD110+, CD3-/CD16+/CD56+, CD11c+/CD123-, and CD11c-/CD123+ cells per millilter of blood increased postexercise. Overall, the 70% WRpeak exercise group showed greater mobilization immediately postexercise, while there was no observable increase in mobilization in the work matched 30% WRpeak exercise group. Mobilization of specific populations of hematopoietic cells mirrored changes in the general mobilization of mononuclear cells, suggesting that exercise serves as a nonspecific mobilization stimulus. Evidently, higher intensity exercise is capable of mobilizing hematopoietic cells to a large extent and immediately postexercise is an ideal time point for their collection.
New & noteworthy: Here we demonstrate for the first time that mobilization of hematopoietic stem cells (HSCs) through exercise is intensity dependent, with the greatest mobilization occurring immediately after high-intensity exercise. As well, we show that exercise is a general stimulus for mobilization: increases in specific HSC populations are reliant on general mononuclear cell mobilization. Finally, we demonstrate no differences in mobilization between groups with different aerobic fitness.
Keywords: bone marrow transplant; exercise; flow cytometry; hematopoietic stem cells.
Copyright © 2017 the American Physiological Society.