Changing of CH4 oxidation potential and biological characteristics with CH4 concentration was studied in a landfill cover soil reactor (LCSR). The maximum rate of CH4 oxidation reached 32.40 mol d-1 m-2 by providing sufficient O2 in the LCSR. The kinetic parameters of methane oxidation in landfill cover soil were obtained by fitting substrate diffusion and consumption model based on the concentration profile of CH4 and O2. The values of [Formula: see text] (0.93-2.29%) and [Formula: see text] (140-524 nmol kgsoil-DW-1·s-1) increased with CH4 concentration (9.25-20.30%), while the values of [Formula: see text] (312.9-2.6%) and [Formula: see text] (1.3 × 10-5 to 9.0 × 10-3 nmol mL-1 h-1) were just the opposite. MiSeq pyrosequencing data revealed that Methylobacter (the relative abundance was decreased with height of LCSR) and Methylococcales_unclassified (the relative abundance was increased expect in H 80) became the key players after incubation with increasing CH4 concentration. These findings provide information for assessing CH4 oxidation potential and changing of biological characteristics in landfill cover soil.
Keywords: Biogas; MiSeq sequencing; diffusion; half-saturation constant; landfill: methanotrophs; microbial diversity; model.