Most histones are assembled into nucleosomes behind the replication fork to package newly synthesized DNA. By contrast, histone variants, which are encoded by separate genes, are typically incorporated throughout the cell cycle. Histone variants can profoundly change chromatin properties, which in turn affect DNA replication and repair, transcription, and chromosome packaging and segregation. Recent advances in the study of histone replacement have elucidated the dynamic processes by which particular histone variants become substrates of histone chaperones, ATP-dependent chromatin remodellers and histone-modifying enzymes. Here, we review histone variant dynamics and the effects of replacing DNA synthesis-coupled histones with their replication-independent variants on the chromatin landscape.