Three crystalline trinuclear gold(I) clusters, [Au3f2y] (1), [Au3fy2] (2), and [Au3y3] (3), where f = N,N'-bis(2,6-dimethylphenyl)methanimidamidate and y = dimethylendiphenylphosphinate, exhibit bridges from the N,N-formamidinate and/or from the ylide anion ligand whose P-methylene groups chelate in an unusual fashion, where the chelate CPC unit is perpendicular to the trigonal plane of the metal atoms. Assemblies 1 and 2 are the first gold(I) trinuclear clusters featuring mixed-ligand bridges from different N,N and C,C donors; 3 is a previously unknown homoleptic ylide anion cyclic trinuclear assembly. Formamidinate bridges in 1 and 2 connect gold(I) atoms at aurophilic distances of 3.084(2) and 3.0543(4) Å, whereas an out-of-plane (perpendicular) P-ylide anion bite produces AuI-AuI distances of as large as 3.900(2) Å in 3. The crystal space groups for 1 and 2 are triclinic P1̅ and that for 3 is monoclinic P21/c, with Z = 2 for 1 and 2 and Z = 4 for 3. Compounds are synthesized under Schlenk conditions at -20 °C in toluene by reacting the proper ratios of the gold(I) formamidinate [Au2f2] with the phosphorus ylide [Hy] under basic conditions (KOH), followed by extraction with ether. This synthesis also produces a dinuclear cation, [Au2f(Hy)2]+, previously reported by our group. A neutral mixed-ligand dinuclear complex, [Au2fy], was not observed. Under UV light, 1 and 2 display a bright-green luminescence at room temperature and in frozen methyltetrahydrofuran solutions under liquid nitrogen, with microsecond lifetimes. All three complexes 1-3 are characterized by their X-ray crystal structures, 1H NMR, IR, UV-visible, and luminescence spectroscopies, and elemental analysis.