Metastable Layered Cobalt Chalcogenides from Topochemical Deintercalation

J Am Chem Soc. 2016 Dec 21;138(50):16432-16442. doi: 10.1021/jacs.6b10229. Epub 2016 Dec 9.

Abstract

We present a general strategy to synthesize metastable layered materials via topochemical deintercalation of thermodynamically stable phases. Through kinetic control of the deintercalation reaction, we have prepared two hypothesized metastable compounds, CoSe and CoS, with the anti-PbO type structure from the starting compounds KCo2Se2 and KCo2S2, respectively. Thermal stability, crystal structure from X-ray and neutron diffraction, magnetic susceptibility, magnetization, and electrical resistivity are studied for these new layered chalcogenides; both CoSe and CoS are found to be weak itinerant ferromagnets with Curie temperatures close to 10 K. Due to the weak van der Waals forces between the layers, CoSe is found to be a suitable host for further intercalation of guest species such as Li-ethylenediamine. From first-principles calculations, we explain why the Co chalcogenides are ferromagnets instead of superconductors as in their iron analogues. Bonding analysis of the calculated electronic density of states both explains their phase stability and predicts the limits of our deintercalation technique. Our results have broad implications for the rational design of new two-dimensional building blocks for functional materials.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.