Cytotoxic T-Lymphocytes (CTLs) kill pathogen-infected or transformed cells following interaction of their T-cell receptors (TCRs) with foreign (e.g. virus-derived) peptides bound to MHC-I molecules on the target cell. TCR binding triggers CTLs to secrete perforin, which forms pores in the target cell membrane, promoting target death. Here, we show that by conjugating drug-loaded lipid nanoparticles to the surface of CTLs, their lytic machinery can be co-opted to lyse the cell-bound drug carrier, providing triggered release of drug cargo upon target cell recognition. Protein encapsulated in T-cell-bound nanoparticles was released following culture of CTLs with target cells in an antigen dose- and perforin-dependent manner and coincided with target cell lysis. Using this approach, we demonstrate the capacity of HIV-specific CTLs to deliver an immunotherapeutic agent to an anatomical site of viral replication. This strategy provides a novel means to couple drug delivery to the action of therapeutic cells in vivo.
Keywords: Cytotoxic T lymphocytes; Drug delivery; Immunotherapy; Lipid nanocapsules; T-pharmacyte.
Copyright © 2016 Elsevier Ltd. All rights reserved.