In human and mouse stem cells and brain, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) can occur outside of CG dinucleotides. Using protein binding microarrays (PBMs) containing 60-mer DNA probes, we evaluated the effect of 5mC and 5hmC on one DNA strand on the double-stranded DNA binding of the mouse B-ZIP transcription factors (TFs) CREB1, ATF1, and JUND. 5mC inhibited binding of CREB1 to the canonical CRE half-site |GTCA but enhanced binding to the C/EBP half-site |GCAA. 5hmC inhibited binding of CREB1 to all 8-mers except TGAT|GCAA, where binding is enhanced. We observed similar DNA binding patterns with ATF1, a closely related B-ZIP domain. In contrast, both 5mC and 5hmC inhibited binding of JUND. These results identify new DNA sequences that are well-bound by CREB1 and ATF1 only when they contain 5mC or 5hmC. Analysis of two X-ray structures examines the consequences of 5mC and 5hmC on DNA binding by CREB and FOS|JUN.