Interferometric surface mapping of a spherical proof mass for ultra precise inertial reference sensors

Appl Opt. 2016 Dec 1;55(34):9830-9838. doi: 10.1364/AO.55.009830.

Abstract

In the context of our investigations on novel inertial reference sensors for space applications, we have explored a design utilizing an optical readout of a spherical proof mass. This concept enables full drag-free operations, hence reducing proof mass residual acceleration noise to a minimum. The main limitations of this sensor are errors in position determination of the center of mass of the proof mass due to the surface topography and the involved path length changes upon rotation. One solution is to apply a surface map for correction of the measurement data, thus improving the precision of position determination. This article presents the results of our one-dimensional interferometric surface topography measurements of a sphere, achieving uncertainties of ≈10 nm, as a first step to realize a complete surface map. The measurement setup consists of two heterodyne interferometers positioned in an opposing configuration, which measure the surface topography while the sphere is continuously rotated by a rotation stage.