Importance: Resuscitative endovascular balloon occlusion of the aorta (REBOA) is an innovative procedure in the treatment of noncompressible truncal hemorrhage. However, readily available fluoroscopy remains a limiting factor in its widespread implementation. Several methods have been proposed to perform REBOA without fluoroscopic guidance, and these methods were adapted predominantly from the military theater.
Objective: To develop a method for performing REBOA in a civilian population using a standardized distance from a set point of entry.
Design, setting, and participants: A retrospective study of whole-body computed tomographic (CT) scans from a cohort of 280 consecutive civilian trauma patients from University Hospitals of Lyon, France, was used to calculate the endovascular distances from both femoral arteries at the level of the upper border of the symphysis pubis to aortic zone I (descending thoracic aorta) and zone III (infrarenal aorta). These whole-body CT scans were performed between 2013 and 2015. Data were analyzed from July 16 to December 7, 2015.
Main outcomes and measures: Two segments (1 per zone) common to all CT scans were isolated, and their location, length, prevalence in the cohort, and predicted prevalence in the general population were calculated by inverting 99% certainty tolerance limits.
Results: Among the 280 trauma patients (140 men and 140 women) in this study, the mean (SD) height was 170.7 (8.7) cm, and the mean (SD) age was 38.8 (16.5) years. The common segment in zone I (414-474 mm) existed in all CT scans. The common segment in zone III (236-256 mm) existed in 99.6% and 97.9% of CT scans from the right and left femoral arteries, respectively. These segments are expected to exist in 98.7% (zone I) and 94.9% (zone III) of the general population.
Conclusions and relevance: Target distances for blind placement of REBOA exist with more than 94% prevalence in a civilian population. These findings support the expanded use of REBOA in emergency department and prehospital settings. Validation for safety and efficacy on cadaveric and clinical models is necessary.