Preconditioning (PC) is an adaptive response to a mild and transient oxidative stress, shown for the first time in myocardial cells and not described in erythrocytes so far. The possible adaptation of human erythrocytes to hydrogen peroxide (H2O2)-induced oxidative stress has been here verified by monitoring one of band 3 protein functions, i.e., Cl-/HCO3- exchange, through rate constant for SO4= uptake measurement. With this aim, erythrocytes were exposed to a mild and transient oxidative stress (30 min to either 10 or 100 μM H2O2), followed by a stronger oxidant condition (300- or, alternatively, 600-μM H2O2 treatment). SO4= uptake was measured by a turbidimetric method, and the possible role of catalase (CAT, significantly contributing to the anti-oxidant system in erythrocytes) in PC response has been verified by measuring the rate of H2O2 degradation. The preventive exposure of erythrocytes to 10 μM H2O2, and then to 300 μM H2O2, significantly ameliorated the rate constant for SO4= uptake with respect to 300 μM H2O2 alone, showing thus an adaptive response to oxidative stress. Our results show that (i) SO4= uptake measurement is a suitable model to monitor the effects of a mild and transient oxidative stress in human erythrocytes, (ii) band 3 protein anion exchange capability is retained after 10 μM H2O2 treatment, (iii) PC response induced by the 10 μM H2O2 pretreatment is clearly detected, and (iv) PC response, elicited by low-concentrated H2O2, is mediated by CAT enzyme and does not involve band 3 protein tyrosine phosphorylation pathways. Erythrocyte adaptation to a short-term oxidative stress may serve as a basis for future studies about the impact of more prolonged oxidative events, often associated to aging, drug consumption, chronic alcoholism, hyperglycemia, or neurodegenerative diseases.
Keywords: Band 3 protein; Catalase; Erythrocytes; Oxidative stress; Preconditioning; SO4 = uptake.