The (6-4) photolyases of the FeS-BCP group can be considered as the most ancient type among the large family of cryptochrome and photolyase flavoproteins. In contrast to other photolyases, they contain an Fe-S cluster of unknown function, a DMRL chromophore, an interdomain loop, which could interact with DNA, and a long C-terminal extension. We compared DNA repair and photoreduction of two members of the FeS-BCP family, Agrobacterium fabrum PhrB and Rhodobacter sphaeroides RsCryB, with a eukaryotic (6-4) photolyase from Ostreococcus, OsCPF, and a member of the class III CPD photolyases, PhrA from A. fabrum. We found that the low DNA repair effectivity of FeS-BCP proteins is largely stimulated by Mg2+ and other divalent cations, whereas no effect of divalent cations was observed in OsCPF and PhrA. The (6-4) repair activity in the presence of Mg2+ is comparable with the repair activities of the other two photolyases. The photoreduction, on the other hand, is negatively affected by Mg2+ in PhrB, but stimulated by Mg2+ in PhrA. A clear relationship of Mg2+ dependency on DNA repair with the evolutionary position conflicts with Mg2+ dependency of photoreduction. We discuss the Mg2+ effect in the context of structural data and DNA binding.
© 2016 The American Society of Photobiology.