An equation of state for the energetic molecular crystal pentaerythritol tetranitrate (PETN) has been developed from a parametrized model for its Helmholtz free energy. The ion motion contribution to the free energy is represented by a sum of Debye models for the vibrational modes of mainly lattice phonon and intramolecular character. The dependence of the frequencies of the normal modes on density is captured using the quasi-harmonic approximation whereby the Debye temperatures for both populations of modes depend explicitly on specific volume. The dependence of the Debye temperatures on specific volume was parametrized to normal-mode frequencies computed from solid state dispersion-corrected density functional theory. The model provides a good description of the thermophysical properties of PETN. The equation of state has been applied to the calculation of thermodynamic states along the principal Hugoniot of single crystal PETN.