Global efforts to address schistosomiasis and soil-transmitted helminthiases (STH) include deworming programs for school-aged children that are made possible by large-scale drug donations. Decisions on these mass drug administration (MDA) programs currently rely on microscopic examination of clinical specimens to determine the presence of parasite eggs. However, microscopy-based methods are not sensitive to the low-intensity infections that characterize populations that have undergone MDA. Thus, there has been increasing recognition within the schistosomiasis and STH communities of the need for improved diagnostic tools to support late-stage control program decisions, such as when to stop or reduce MDA. Failure to adequately address the need for new diagnostics could jeopardize achievement of the 2020 London Declaration goals. In this report, we assess diagnostic needs and landscape potential solutions and determine appropriate strategies to improve diagnostic testing to support control and elimination programs. Based upon literature reviews and previous input from experts in the schistosomiasis and STH communities, we prioritized two diagnostic use cases for further exploration: to inform MDA-stopping decisions and post-MDA surveillance. To this end, PATH has refined target product profiles (TPPs) for schistosomiasis and STH diagnostics that are applicable to these use cases. We evaluated the limitations of current diagnostic methods with regards to these use cases and identified candidate biomarkers and diagnostics with potential application as new tools. Based on this analysis, there is a need to develop antigen-detecting rapid diagnostic tests (RDTs) with simplified, field-deployable sample preparation for schistosomiasis. Additionally, there is a need for diagnostic tests that are more sensitive than the current methods for STH, which may include either a field-deployable molecular test or a simple, low-cost, rapid antigen-detecting test.