Objective: To investigate whether genetics, underlying pathology, or repeated seizures contribute to atrophy in specific white matter tracts.
Methods: Medically refractory unilateral temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS-TLE, n = 26) was studied as an archetype of focal epilepsy, using fixel-based analysis of diffusion-weighted imaging. A genetic effect was assessed in first-degree relatives of HS-TLE subjects who did not have epilepsy themselves (HS-1°Rel; n = 26). The role of disease process was uncovered by comparing HS-TLE to unilateral TLE with normal clinical magnetic resonance imaging (MRI-neg TLE; n = 26, matched for seizure severity). The effect of focal seizures was inferred from lateralized atrophy common to both HS-TLE and MRI-neg TLE, in comparison to healthy controls (n = 76).
Results: HS-1 °Rel had bilaterally small hippocampi, but no focal white matter atrophy was detected, indicating a limited effect of genetics. HS-TLE subjects had lateralized atrophy of most temporal lobe tracts, and hippocampal volumes in HS-TLE correlated with parahippocampal cingulum and anterior commissure atrophy, indicating an effect of the underlying pathology. Ipsilateral atrophy of the tapetum, uncinate, and inferior fronto-occipital fasciculus was found in both HS-TLE and MRI-neg TLE, suggesting a common lateralized effect of focal seizures. Both epilepsy groups had bilateral atrophy of the dorsal cingulum and corpus callosum fibers, which we interpret as a consequence of bilateral insults (potentially generalized seizures and/or medications).
Interpretation: Underlying pathology, repeated focal seizures, and global insults each contribute to atrophy in specific tracts. Genetic factors make less of a contribution in this cohort. A multifactorial model of white matter atrophy in focal epilepsy is proposed. Ann Neurol 2017;81:240-250.
© 2016 American Neurological Association.