Objective: To address the hypothesis that physiologic interactions between astrocytes and endothelial cells (EC) at the blood-brain barrier (BBB) are afflicted by pathogenic inflammatory signaling when astrocytes are exposed to aquaporin-4 (AQP4) antibodies present in the immunoglobulin G (IgG) fraction of serum from patients with neuromyelitis optica (NMO), referred to as NMO-IgG.
Methods: We established static and flow-based in vitro BBB models incorporating co-cultures of conditionally immortalized human brain microvascular endothelial cells and human astrocyte cell lines with or without AQP4 expression.
Results: In astrocyte-EC co-cultures, exposure of astrocytes to NMO-IgG decreased barrier function, induced CCL2 and CXCL8 expression by EC, and promoted leukocyte migration under flow, contingent on astrocyte expression of AQP4. NMO-IgG selectively induced interleukin (IL)-6 production by AQP4-positive astrocytes. When EC were exposed to IL-6, we observed decreased barrier function, increased CCL2 and CXCL8 expression, and enhanced leukocyte transmigration under flow. These effects were reversed after application of IL-6 neutralizing antibody.
Conclusions: Our results indicate that NMO-IgG induces IL-6 production by AQP4-positive astrocytes and that IL-6 signaling to EC decreases barrier function, increases chemokine production, and enhances leukocyte transmigration under flow.