Purpose: To optimize and investigate the influence of bipolar gradients for flow suppression in metabolic quantification of hyperpolarized 13 C chemical shift imaging (CSI) of mouse liver at 9.4 T.
Methods: The trade-off between the amount of flow suppression using bipolar gradients and T2* effect from static spins was simulated. A free induction decay CSI sequence with alternations between the flow-suppressed and non-flow-suppressed acquisitions for each repetition time was developed and was applied to liver tumor-bearing mice via injection of hyperpolarized [1-13 C] pyruvate.
Results: The in vivo results from flow suppression using the velocity-optimized bipolar gradient were comparable with the simulation results. The vascular signal was adequately suppressed and signal loss in stationary tissue was minimized. Application of the velocity-optimized bipolar gradient to tumor-bearing mice showed reduction in the vessel-derived pyruvate signal contamination, and the average lactate/pyruvate ratio increased by 0.095 (P < 0.05) in the tumor region after flow suppression.
Conclusion: Optimization of the bipolar gradient is essential because of the short 13 C T2* and high signal in venous flow in the mouse liver. The proposed velocity-optimized bipolar gradient can suppress the vascular signal, minimizing T2*-related signal loss in stationary tissues at 9.4 T. Magn Reson Med 78:1674-1682, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Keywords: bipolar gradient; flow suppression; hyperpolarized 13C; liver tumor; pyruvate; slow venous flow.
© 2016 International Society for Magnetic Resonance in Medicine.