Background: Scedosporiosis is associated with a mortality rate of up to 90% in patients suffering from disseminated infections. Recommended first-line treatment is voriconazole, but epidemiological cut-off values and clinical breakpoints have not been determined.
Objectives: To correlate voriconazole treatment response in mice suffering from disseminated scedosporiosis with MIC values determined using CLSI broth microdilution, Etest (bioMérieux) and disc diffusion.
Methods: Voriconazole MICs for 31 Scedosporium apiospermum strains were determined using CLSI broth microdilution, Etest and disc diffusion. Groups of mice were challenged intravenously with 1 out of 16 S. apiospermum strains (voriconazole CLSI broth microdilution MIC range: 0.125-8.0 mg/L) and treated with 40 mg/kg voriconazole orally by gavage once daily. Efficacy of voriconazole was evaluated by a statistically significant ( P < 0.05) reduction in fungal burden in brain.
Results: A categorical agreement of 90.4% was reached for CLSI broth microdilution and disc diffusion and of 93.6% for CLSI broth microdilution and Etest. Correlation of CLSI MICs and in vivo outcome was good, as mice challenged with strains with an MIC ≤2 mg/L responded to voriconazole therapy in 92.3% and those challenged with strains with an MIC ≥4 mg/L responded to voriconazole therapy in 33.3%.
Conclusions: CLSI broth microdilution and Etest deliver comparable results that enable a prediction of in vivo outcome. Our results suggest that voriconazole is able to reduce fungal burden in the brain of 92.3% of all mice challenged with strains with voriconazole CLSI MICs ≤2 mg/L, while mice challenged with strains with CLSI MICs ≥4 mg/L showed limited response to voriconazole treatment.
© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: [email protected].