Alzheimer's disease (AD) is an irreversible multifaceted neurodegenerative disorder that gradually degrades neuronal cells. Presently, it is the most common reason for the memory loss and dementia in older individuals. It is patho-physiologically described by extracellular amyloid beta (Aβ) deposition, intracellular neurofibrillary tangles (NFTs) retention, neuronal decline, and neurotransmitter system derangement. Various receptors such as nicotinic acetylcholine, N-methyl-D-aspartate, insulin, serotonin, adenosine, and histamine are actively involved in the physiological progression of AD. Till date memantine and only four other acetylcholinesterase inhibitors have been approved for the treatment of AD by US Food and Drug Administration (US-FDA). Hence, there is a critical need to explore and develop novel and helpful management systems which could specifically target different receptors involved in AD progression. We believe that these receptors targeting will either impede the disease onset or slow down its pathogenesis. In the present review, we tried to uncover some receptors that could be blocked by novel inhibitors and ultimately used for the therapeutic management of AD.
Keywords: Adenosine receptor; Alzheimer's disease; Insulin receptor; N-methyl-D-aspartate receptor; Nicotinic acetylcholine receptors.
Copyright© Bentham Science Publishers; For any queries, please email at [email protected].