Background: In view of age-related brain changes, identifying factors that are associated with healthy aging are of great interest. In the present study, we compared the functional brain network characteristics of three groups of healthy older participants aged 61-75 years who had a different cognitive and motor training history (multi-domain group: participants who had participated in a multi-domain training; visuomotor group: participants who had participated in a visuomotor training; control group: participants with no specific training history). The study's basic idea was to examine whether these different training histories are associated with differences in behavioral performance as well as with task-related functional brain network characteristics. Based on a high-density electroencephalographic measurement one year after training, we calculated graph-theoretical measures representing the efficiency of functional brain networks.
Results: Behaviorally, the multi-domain group performed significantly better than the visuomotor and the control groups on a multi-domain task including an inhibition domain, a visuomotor domain, and a spatial navigation domain. In terms of the functional brain network features, the multi-domain group showed significantly higher functional connectivity in a network encompassing visual, motor, executive, and memory-associated brain areas in the theta frequency band compared to the visuomotor group. These brain areas corresponded to the multi-domain task demands. Furthermore, mean connectivity of this network correlated positively with performance across both the multi-domain and the visuomotor group. In addition, the multi-domain group showed significantly enhanced processing efficiency reflected by a higher mean weighted node degree (strength) of the network as compared to the visuomotor group.
Conclusions: Taken together, our study shows expertise-dependent differences in task-related functional brain networks. These network differences were evident even a year after the acquisition of the different expertise levels. Hence, the current findings can foster understanding of how expertise is positively associated with brain functioning during aging.
Keywords: Electroencephalography (EEG); Expertise; Functional brain networks; Graph theory; Healthy aging; Network-based statistics (NBS).