Background: The purpose of this analysis was to examine whether implantable hemodynamic monitor-derived baseline estimated pulmonary artery diastolic pressure (ePAD) and change from baseline ePAD were independent predictors of all-cause mortality in patients with chronic heart failure.
Methods and results: Retrospective analysis used data from 3 studies (n=790 patients; 216 deaths). Baseline ePAD was related to mortality using a multivariable model including baseline and demographic data. Changes in ePAD defined as change from baseline to 6 months and from baseline to 14 days before death or exit from study were related to subsequent mortality, and analysis was adjusted for baseline ePAD. Area under the pressure versus time curve during 180 days before death or exit from study was related to mortality. Baseline ePAD, independent of other covariates, was a significant predictor of mortality (hazard ratio=1.07; 95% confidence interval=1.05-1.09; P<0.0001). Change in ePAD was an independent predictor of mortality (hazard ratio=1.07; 95% confidence interval=1.05-1.100; P=0.0008). Increased ePAD of 3, 4, or 5 mm Hg from baseline to 6 months was associated with increased mortality risk of 23.8%, 32.9%, or 42.8%. Change in ePAD from baseline to 14 days before death or exit from study was higher in patients who died (3.0±8 versus 1.7±10 mm Hg; P=0.003). Area under the pressure versus time curve in the final 180 days before death or exit from study was higher in patients who died versus those alive at end of study (185±668 versus 17±482 mm Hg.days; P=0.006).
Conclusions: Implantable hemodynamic monitor-derived baseline ePAD and change from baseline ePAD were independent predictors of mortality in chronic heart failure patients.
Keywords: heart failure; mortality.
© 2017 American Heart Association, Inc.