Background: Hemiparetic stroke leads to structural and metabolic alterations of skeletal muscle tissue, thereby contributing to functional impairment associated with stroke. In situ metabolic processes at tissue level in skeletal muscle have not been investigated. We hypothesize that muscular metabolic capacity is limited after hemiparetic stroke, and that changes affect rather the paretic than non-paretic limb.
Methods: Nine male hemiparetic stroke survivors (age, 62±8years; BMI, 28±4kg/m2; median stroke latency, 23months ranging from 7 to 34months poststroke) underwent dynamic in situ measurements of carbohydrate and lipid metabolism at fasting condition and during oral glucose tolerance testing, using bilateral microdialysis. Results were compared to 8 healthy male subjects of similar age and BMI.
Results: Tissue perfusion, fasting and postprandial profiles of interstitial metabolites glucose, pyruvate, lactate and glycerol did not differ between paretic and non-paretic muscle. Patients displayed higher fasting and postprandial dialysate glycerol levels compared to controls (P<0.001) with elevated plasma FFA (fasting FFA; 0.63±0.23 vs. 0.29±0.17mmol/L; P=0.004). Glycolytic activity was higher in patients vs. controls, with increased lactate production upon glucose load (P<0.001).
Conclusions: An elevated lipolytic and glycolytic activity on tissue level suggests an impaired substrate metabolism with blunted oxidative metabolism in bilateral skeletal muscle in patients after hemiparetic stroke. Muscular metabolic properties did not differ between paretic and non-paretic leg. Further work is needed to investigate the clinical impact of this impaired muscular metabolic capacity in post-stroke patients.
Keywords: Calorimetry; Energy metabolism; Microdialysis; Mitochondrial function; Muscle tissue perfusion; Stroke.
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.