Metabolism and excretion of novel pulmonary-targeting docetaxel liposome in rabbits

Korean J Physiol Pharmacol. 2017 Jan;21(1):45-54. doi: 10.4196/kjpp.2017.21.1.45. Epub 2016 Dec 21.

Abstract

Our study aims to determine the metabolism and excretion of novel pulmonary-targeting docetaxel liposome (DTX-LP) using the in vitro and in vivo animal experimental models. The metabolism and excretion of DTX-LP and intravenous DTX (DTX-IN) in New Zealand rabbits were determined with ultraperformance liquid chromatography tandem mass spectrometry. We found DTX-LP and DTX-IN were similarly degraded in vitro by liver homogenates and microsomes, but not metabolized by lung homogenates. Ultra-performance liquid chromatography tandem mass spectrometry identified two shared DTX metabolites. The unconfirmed metabolite M un differed structurally from all DTX metabolites identified to date. DTX-LP likewise had a similar in vivo metabolism to DTX-IN. Conversely, DTX-LP showed significantly diminished excretion in rabbit feces or urine, approximately halving the cumulative excretion rates compared to DTX-IN. Liposomal delivery of DTX did not alter the in vitro or in vivo drug metabolism. Delayed excretion of pulmonary-targeting DTX-LP may greatly enhance the therapeutic efficacy and reduce the systemic toxicity in the chemotherapy of non-small cell lung cancer. The identification of M un may further suggest an alternative species-specific metabolic pathway.

Keywords: Animal model; Chemotherapy; Cumulative excretion rate; Liquid chromatography; Lung cancer; Mass spectrometry.