The substitution N132G in the SDN motif of class A β-lactamases from rapidly growing mycobacteria was previously shown to impair their inhibition by avibactam but to improve the stability of acyl-enzymes formed with clavulanate. The same substitution was introduced in KPC-2 and CTX-M-15 to assess its impact on β-lactamases from Enterobacteriaceae and evaluate whether it may lead to resistance to the ceftazidime-avibactam combination. Kinetic parameters for the inhibition of the β-lactamases by avibactam and clavulanate were determined by spectrophotometry using nitrocefin as the substrate. The substitution N132G impaired (>1,000-fold) the efficacy of carbamylation of KPC-2 and CTX-M-15 by avibactam. The substitution improved the inhibition of KPC-2 by clavulanate due to reduced deacylation, whereas the presence or absence of N132G resulted in the inhibition of CTX-M-15 by clavulanate. The hydrolysis of amoxicillin and nitrocefin by KPC-2 and CTX-M-15 was moderately affected by the substitution N132G, but that of ceftazidime, ceftaroline, and aztreonam was drastically reduced. Isogenic strains producing KPC-2 and CTX-M-15 were constructed to assess the impact of the substitution N132G on the antibacterial activities of β-lactam-inhibitor combinations. For amoxicillin, the substitution resulted in resistance and susceptibility for avibactam and clavulanate, respectively. For ceftazidime, ceftaroline, and aztreonam, the negative impact of the substitution on β-lactamase activity prevented resistance to the β-lactam-avibactam combinations. In conclusion, the N132G substitution has profound effects on the substrate and inhibition profiles of class A β-lactamases, which are largely conserved in distantly related enzymes. Fortunately, the substitution does not lead to resistance to the ceftazidime-avibactam combination.
Keywords: CTX-M-15; KPC-2; avibactam; clavulanate; β-lactamase inhibitor.
Copyright © 2017 American Society for Microbiology.