Exposure to natural and man-made environmental toxins concurrently can pose a greater threat to multiple organs. In the present work, we investigated interactions between deltamethrin (DM) and cadmium (Cd), whose mechanisms of action in humans are poorly understood. Albino mice were randomly divided into four groups, each containing six mice: saline as control, DM-treated, cadmium chloride (CdCl2)-treated, and CdCl2 plus DM treated. After 2 weeks of treatment biochemical and hematological effects, total leukocyte count (TLC), differential leukocyte count, humoral-mediated immune responses, and histopathological studies were conducted. Mice exposed to DM and Cd showed a significant increase in aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Also, DM and Cd administration resulted in suppression of humoral immunity, erythrocyte count, hemoglobin, hematocrit, and TLC. Histopathological evidence revealed hepatic damage, supporting the AST and ALT findings. Cd and DM exhibited an additive type of toxicity. It could be concluded that these toxins either target different cellular pathways, or the individual amounts used in this study were not enough to saturate the toxicological target, thus producing additive effects.
Keywords: Deltamethrin; cadmium intoxication; hematology; immunosuppression; oxidative stress.