The mechanisms underlying the effects of severe burn trauma are not well understood. We previously demonstrated the ability of nephrilin peptide (an iron-binding peptide believed to enter cells through iron-uptake pathways) to suppress aspects of the neuroinflammatory response in a rat scald model, as well as sepsis mortality in a mouse model. This study explores the effect of nephrilin on other clinically relevant outcomes in the rat scald model. In a rat scald model, animals were treated with nephrilin either in week 1 or week 2 post-burn. Measurements were made of serum glucose and creatinine as well as wound area by planimetry and body composition by DEXA. Given the potential role of iron, results were analyzed both for the entire cohort of animals and for the normoferremic (>100 ug/dL serum iron) subset of animals. Nephrilin improved body composition, wound healing, kidney function, and glycemic control. The first two effects were significant in normoferremic but not in hypoferremic animals suggesting an effect of iron status on burn injury outcomes. Nephrilin treatment modulates a number of relevant variables in the rat scald model.
Keywords: Nephrilin; burn injury; eGFR; glycemic control; iron; lean body mass; wound healing.