Heterogeneous ferroelastic transition that produces hierarchical 90° tetragonal nanodomains via mechanical loading and its effect on facilitating ferroelectric domain switching in relaxor-based ferroelectrics were explored. Combining in situ electron microscopy characterization and phase-field modeling, we reveal the nature of the transition process and discover that the transition lowers by 40% the electrical loading threshold needed for ferroelectric domain switching. Our results advance the fundamental understanding of ferroelectric domain switching behavior.