Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the field-squared (∇Erms2) is constant, a characteristic that is otherwise highly nonuniform in traditional DEP platforms. The governing isoDEP equations were derived herein and applied to two different isoDEP prototypes: (i) one fabricated from deep reactive ion etching (DRIE) of a conductive silicon wafer (1-10 Ω-cm) whose patterned features served as electrodes and microchannel sidewalls simultaneously; (ii) a second where the electric field is applied lengthwise through a PDMS microchannel whose geometry follows a specific curvature. Both positive and negative dielectrophoresis was demonstrated with the isoDEP devices using silver-coated hollow glass spheres and polystyrene particles, respectively. Particle tracking was used to compare particle trajectory with the expected dielectrophoretic response; further, particle velocity was used to measure the Clausius-Mossotti factor of individual polystyrene particles (18-24.9 μm) in both devices with a value of -0.40 ± 0.063 (n = 110) and -0.48 ± 0.055 (n = 18) for the DRIE and PDMS isoDEP platforms, respectively. The isoDEP platform is capable of analyzing multiple particles simultaneously, providing greater throughput than traditional electrorotation platforms.
Keywords: Dielectric spectroscopy; Dielectrophoresis; Microfluidics; Particle tracking velocimetry.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.