The efficient design of nanocarriers is a major challenge and must be correlated with the route of administration. Intranasal route is studied for local, systemic or cerebral treatments. In order to develop nanocarriers with suitable properties for intranasal delivery, to achieve brain and to market the product, it is extremely important the simplification of the formulation in terms of raw materials. Surfactants and cryoprotectants are often added to improve structuration and/or storage of polymeric nanoparticles. PLGA-PEG nanocarriers were prepared by nanoprecipitation method evaluating the critical role of sucrose as surfactant-like and cryoprotectant, with the aim to obtain a simpler formulation compared to those proposed in other papers. Photon correlation spectroscopy and Turbiscan analysis show that sucrose is a useful excipient during the preparation process and it effectively cryoprotects nanoparticles. Among the investigated nanocarriers with different degree of PEG, PEGylated PLGA (5%) confers weak interaction between nanoparticles and mucin as demonstrated by thermal analysis and mucin particle method. Furthermore, in vitro biological studies on HT29, as epithelium cell line, does not show cytotoxicity effect for this nanocarrier at all texted concentrations. The selected nanosystem was also studied to load docetaxel, as model drug, and characterized by a technological point of view.
Keywords: DSC; Intranasal administration; PLGA-PEG; docetaxel; mucoadhesion; nanoparticles.