Background: Spinal tuberculosis is the most common form of musculoskeletal tuberculosis. The expression of matrix metalloproteinase-1 (MMP-1) is increased in cells with Mycobacterium tuberculosis infection. MMP-1 plays a curial role in extracellular matrix degradation during the progression of tuberculosis. Although the 1G/2G polymorphism in MMP-1-1607 influences its transcription, its role in spinal tuberculosis remains unknown.
Methods: Healthy controls and patients with spinal tuberculosis of Han ethnicity were recruited between January 2010 and May 2016. The MMP-1-1607 1G/2G polymorphism was genotyped using the Sequenom mass Array polymorphism analysis system.
Results: The genotypes of 1G/1G, 1G/2G, and 2G/2G were found in 13.7%, 53.6%, and 32.8% of patients, and 12.2%, 37.4%, and 50.4% of controls, respectively. The 1G/2G genotype were more common in cases than in controls (P=2.05E-04). The 1G allele showed an association with an increased risk for spinal tuberculosis when compared to 2G allele (P=.004). 1G genotypes, having at least one 1G allele, were associated with the risk of developing spinal tuberculosis (1G/1G+1G/2G vs 2G/2G: OR=2.084, 95%CI=1.401-3.100, P=2.65E-04).
Conclusion: 1G genotypes of the MMP-1-1607 may be associated with susceptibility to spinal tuberculosis in Southern Chinese Han population.
Keywords: Southern Chinese Han population; matrix metalloproteinase-1; polymorphism; spinal tuberculosis.
© 2017 Wiley Periodicals, Inc.