Essentials Fibrinolysis inhibitors are localized in advanced atheroma by immunohistology of endarterectomies. Neovascular endothelium/neocapillaries show thrombin-activatable fibrinolysis inhibitor (TAFI). Macrophage areas show free plasminogen activator inhibitor (PAI-1), notably in the vulnerable part. Free PAI-1 and TAFI stabilize active plaque area by inhibition of fibrinolysis and inflammation.
Summary: Background Fibrinolysis plays an important role in destabilization of atherosclerotic plaques and is tightly regulated by specific inhibitors. Objective The fibrinolysis inhibitors plasminogen activator inhibitor type-1 (PAI-1) and thrombin-activatable fibrinolysis inhibitor (TAFI) were quantified and described in the morphological context of advanced carotid plaques American Heart Association VI-VIII to elucidate their role in plaque stability. Methods Immunohistochemistry in serial sections along the longitudinal axis of endarterectomies from patients with symptomatic carotid stenosis (n = 19) were studied using an antibody specific for free PAI-1 (I205), an antibody with high affinity for TAFI/TAFIa (CP17) and established antibodies for smooth muscle cells (α-actin), endothelial cells (von Willebrand factor [VWF]), macrophages (CD68) and platelets (CD42). Results PAI-1 and TAFI show a specific distribution in these advanced plaques with a maximum corresponding to the internal carotid artery (ICA). Free PAI-1 was mainly detected in macrophages and in intravascular thrombi, and TAFI in endothelial cells (ECs) but also macrophages. The one-way ANOVA analysis with Bonferroni's correction showed a significant increase of macrophages and ECs, TAFI and PAI-1 in areas with high neovascularization in endarterectomy sections corresponding to ICA. High Spearman factors for TAFI, PAI-1 and VWF indicate neovascularization as the main source of plasma proteins, transported by platelets into the atheroma (PAI-1) or expressed by ECs (TAFI). CD68 was highly associated with VWF, PAI-1 and especially TAFI, underlining the role of macrophages in fibrinolytic activity and inflammation. Conclusion The abundance of free PAI-1 and TAFI in the plaque may inhibit plasmin generation and thereby counteract plaque destabilization by fibrinolysis, cell migration and inflammation.
Keywords: Endarterectomy; Plasminogen Activator Inhibitor 1; fibrinolysis; immunohistochemistry; thrombin-activatable fibrinolysis inhibitor.
© 2017 International Society on Thrombosis and Haemostasis.