We have reported that an extract of Scutellaria baicalensis (ESB) has effects against obesity and hypertriglyceridemia in type 2 diabetic animal model (db/db mouse). In the present study, we tried to explain the pharmacological effects of ESB by integrating gene expression information from db/db mouse liver with that of ESB-treated HepG2 hepatocellular carcinoma cells. Using Connectivity Map (cmap) analysis, we found an inverse relationship in the pharmaceutical profiles based on gene expression between db/db mouse liver and ESB-treated HepG2 cells. This inverse relationship between the two data sets was also observed for pathway activities. Functional network analysis showed that biological functions associated with diabetes and lipid metabolism were commonly enriched in both data sets. We also observed a similarity in distribution of cmap enrichment scores between db/db mouse liver and human diabetic liver, whereas there was an inverse pattern of cmap enrichment scores in human diabetic liver compared with ESB-treated HepG2 cells. This relationship might explain the pharmacological activities of ESB against db/db mouse and possible effectiveness of ESB against human diabetes. We expect that our approach using in vitro cell lines could be applied in predicting the pharmacological effectiveness of herbal drugs in in vivo systems.